
Вопрос задан 02.05.2019 в 10:06.
Предмет Алгебра.
Спрашивает Васильев Саша.
Произведение двух последовательных натуральных четных чисел больше квадрата меньшего из них на
16.Чему равна сумма данных чисел?

Ответы на вопрос

Отвечает Смирнов Георгий.
N(n+2) -n² =16;
2n=16 ⇒n=8.
n+(n +2)=2n+ 2 =2*8+2 =18.
2n=16 ⇒n=8.
n+(n +2)=2n+ 2 =2*8+2 =18.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Я могу помочь вам с вашим вопросом. Произведение двух последовательных натуральных четных чисел больше квадрата меньшего из них на 16. Чтобы найти сумму данных чисел, нам нужно решить следующее уравнение:
$$x(x+2) = x^2 + 16$$
Вычитая $$x^2$$ из обеих частей, получаем:
$$x^2 + 2x - x^2 = 16$$
Упрощая, получаем:
$$2x = 16$$
Деля обе части на 2, получаем:
$$x = 8$$
Таким образом, меньшее из двух чисел равно 8, а большее равно 10. Сумма данных чисел равна:
$$8 + 10 = 18$$
Надеюсь, это помогло вам.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili