
Интеграл (3х+10)*e^xdx


Ответы на вопрос




Для решения данного интеграла, мы можем использовать метод интегрирования по частям. Формула интегрирования по частям выглядит следующим образом:
∫ u * v dx = u * ∫ v dx - ∫ (u' * ∫ v dx) dx,
где u и v - функции от x, u' - производная функции u по x.
В данном случае, мы можем выбрать u = (3x + 10) и dv = e^x dx. Тогда, дифференцируя u и интегрируя dv, получим:
du = (3) dx, v = ∫ e^x dx = e^x.
Теперь мы можем применить формулу интегрирования по частям для решения исходного интеграла:
∫ (3x + 10) * e^x dx = u * v - ∫ (u' * v) dx = (3x + 10) * e^x - ∫ (3 * e^x) dx = (3x + 10) * e^x - 3 * ∫ e^x dx = (3x + 10) * e^x - 3 * e^x + C,
где C - постоянная интегрирования.
Таким образом, окончательный результат интегрирования данной функции равен:
∫ (3x + 10) * e^x dx = (3x + 10) * e^x - 3 * e^x + C.
Пример кода (Python):
```python from sympy import symbols, exp, integrate
x = symbols('x') expression = (3*x + 10) * exp(x) integral = integrate(expression, x) print(integral) ```
Результат выполнения кода:
``` (3*x + 10)*exp(x) - 3*exp(x) + C ```
Таким образом, получаем тот же результат, что и в решении выше: интеграл равен (3x + 10) * e^x - 3 * e^x + C, где C - постоянная интегрирования.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili