
Cos2x-2sinx×cos2x=0


Ответы на вопрос




I can help you solve this trigonometric equation. First, let's rewrite cos2x using the double angle formula:
$$cos2x = cos^2x - sin^2x$$
Then, we can substitute this into the original equation and simplify:
$$cos^2x - sin^2x - 2sinx \times cos^2x - sin^2x = 0$$
$$cos^2x - 3sin^2x - 2sinx \times cos^2x = 0$$
Next, we can factor out cos^2x from the equation and get:
$$cos^2x (1 - 3sinx - 2sinx) = 0$$
This equation is true when either cos^2x = 0 or 1 - 3sinx - 2sinx = 0. Let's solve for each case separately.
If cos^2x = 0, then cosx = 0. This happens when x is an odd multiple of $\frac{\pi}{2}$, or:
$$x = \frac{(2n + 1)\pi}{2}, n \in \mathbb{Z}$$
If 1 - 3sinx - 2sinx = 0, then we can use the quadratic formula to solve for sinx:
$$sinx = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times (-2)}}{2 \times 1}$$
$$sinx = \frac{3 \pm \sqrt{17}}{4}$$
However, since the sine function has a range of [-1, 1], only the negative root is valid:
$$sinx = \frac{3 - \sqrt{17}}{4}$$
To find the value of x, we can use the inverse sine function and the periodicity of sine:
$$x = sin^{-1}(\frac{3 - \sqrt{17}}{4}) + 2\pi n, n \in \mathbb{Z}$$
Therefore, the general solution of the equation is:
$$x = \frac{(2n + 1)\pi}{2}, sin^{-1}(\frac{3 - \sqrt{17}}{4}) + 2\pi n, n \in \mathbb{Z}$$
You can check your answer using this [online calculator](https://www.symbolab.com/solver/trigonometric-equation-calculator/cos2x%2Bsinx%3D0). I hope this helps you understand how to solve trigonometric equations. If you have any other questions, feel free to ask me.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili