
автомобиль, пройдя путь от А до В равный 300 км ,повернул назад и через 1 час 12 мин после выхода
из В увеличил скорость на 16 км\ч .В результате на обратный путь он затратил на 48 мин меньше,чем на путь от А до В. Найдите первоночальную скорость автомобиля.

Ответы на вопрос

Решение в тестовом документе. (Просто так формулы удобнее писать)



Problem Analysis
We are given that a car travels from point A to point B, a distance of 300 km, and then turns back. After 1 hour and 12 minutes from leaving point B, the car increases its speed by 16 km/h. As a result, the car takes 48 minutes less for the return trip than it took for the trip from A to B. We need to find the initial speed of the car.Solution
Let's assume the initial speed of the car is x km/h. We can break down the problem into two parts: the time taken for the trip from A to B and the time taken for the return trip.# Time taken for the trip from A to B
The time taken for the trip from A to B can be calculated using the formula time = distance / speed. Substituting the values, we get: time_AB = 300 / x.# Time taken for the return trip
After 1 hour and 12 minutes from leaving point B, the car increases its speed by 16 km/h. Let's denote the increased speed as x + 16 km/h. The time taken for the return trip can be calculated using the formula time = distance / speed. Substituting the values, we get: time_return = 300 / (x + 16).# Time difference
We are given that the car takes 48 minutes less for the return trip than it took for the trip from A to B. We can convert 48 minutes to hours by dividing it by 60: 48 / 60 = 0.8 hours. Therefore, the time difference can be expressed as: time_AB - time_return = 0.8.# Solving the equation
We can now solve the equation time_AB - time_return = 0.8 to find the initial speed of the car.Let's substitute the values of time_AB and time_return into the equation: (300 / x) - (300 / (x + 16)) = 0.8.
To simplify the equation, we can multiply both sides by x(x + 16) to eliminate the denominators: 300(x + 16) - 300x = 0.8x(x + 16).
Simplifying further, we get: 4800 = 0.8x^2 + 12.8x.
Rearranging the equation, we have: 0.8x^2 + 12.8x - 4800 = 0.
Now we can solve this quadratic equation to find the value of x.
Calculation
Using the quadratic formula x = (-b ± sqrt(b^2 - 4ac)) / (2a), where a = 0.8, b = 12.8, and c = -4800, we can calculate the value of x.Substituting the values into the quadratic formula, we get: x = (-12.8 ± sqrt(12.8^2 - 4 * 0.8 * -4800)) / (2 * 0.8).
Simplifying further, we have: x = (-12.8 ± sqrt(163.84 + 15360)) / 1.6.
x = (-12.8 ± sqrt(15523.84)) / 1.6.
Taking the square root, we get: x = (-12.8 ± 124.6) / 1.6.
Simplifying further, we have two possible solutions: 1. x = (-12.8 + 124.6) / 1.6. 2. x = (-12.8 - 124.6) / 1.6.
Calculating each solution, we get: 1. x = 111.8 / 1.6 = 69.875. 2. x = -137.4 / 1.6 = -85.875.
Since the speed of a car cannot be negative, we can discard the second solution.
Answer
Therefore, the initial speed of the car is 69.875 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili