
Найдите скорость изменения функции y=2cos(2x-2) в точке x0=1


Ответы на вопрос

y ' = 2 (cos (2x - 2)) ' = - 2 sin (2x - 2) (2x - 2) ' = - 4 sin (2x - 2)
y ' (1) = - 4 sin (2*1 - 2) = - 4 sin 0 = 0



Finding the Derivative of the Function
To find the derivative of the function \( y = 2\cos(2x-2) \) at the point \( x_0 = 1 \), we can use the chain rule for differentiation. The chain rule states that if \( y = f(g(x)) \), then \( \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \), where \( u = g(x) \).
Applying the Chain Rule
In this case, let's consider \( u = 2x-2 \) and \( y = 2\cos(u) \). The derivative of \( y \) with respect to \( u \) is \( \frac{dy}{du} = -2\sin(u) \), and the derivative of \( u \) with respect to \( x \) is \( \frac{du}{dx} = 2 \).
Calculating the Derivative at \( x_0 = 1 \)
Now, we can calculate the derivative of the function \( y = 2\cos(2x-2) \) at the point \( x_0 = 1 \) by substituting \( x_0 = 1 \) into the derivatives we found.
The derivative of the function at \( x_0 = 1 \) is: \[ \frac{dy}{dx} \bigg|_{x=1} = \frac{dy}{du} \cdot \frac{du}{dx} \bigg|_{x=1} = -2\sin(u) \cdot 2 \bigg|_{x=1} \]
Result
Therefore, the derivative of the function \( y = 2\cos(2x-2) \) at the point \( x_0 = 1 \) is: \[ \frac{dy}{dx} \bigg|_{x=1} = -4\sin(0) = 0 \]
The derivative of the function \( y = 2\cos(2x-2) \) at the point \( x_0 = 1 \) is 0. This means that at \( x = 1 \), the function has a horizontal tangent and is not changing with respect to \( x \) at that point.
[[8 #]]


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili