Вопрос задан 29.04.2019 в 20:48. Предмет Алгебра. Спрашивает Козыкина Елизавета.

Назовите наименьшее целое число удовлетворяющее неравенству : -a< корень из 77

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бычин Артём.
-a\ \textless \ \sqrt{77} \\a\ \textgreater - \sqrt{77}
Самое наименьшее значение 8.
т.к. - \sqrt{77} не целое число, нужно найти то число которое будет приближенно равно следующему числу.
- \sqrt{64} =-8\\- \sqrt{64}\ \textgreater \ -\sqrt{77} \\-8\ \textgreater - \sqrt{77}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного неравенства, нужно найти наименьшее целое число, которое удовлетворяет неравенству "-a < корень из 77". Давайте разберемся по шагам:

1. Начнем с неравенства "-a < корень из 77". Чтобы избавиться от знака "-" перед переменной "a", умножим обе части неравенства на -1. Получим "a > -корень из 77".

2. Корень из 77 равен примерно 8.77496 (округленно до пятого знака после запятой).

3. Теперь мы имеем неравенство "a > -8.77496". Чтобы найти наименьшее целое число, удовлетворяющее этому неравенству, возьмем следующее целое число после -8.77496, то есть -8. Наш ответ: a > -8.

Таким образом, наименьшее целое число, которое удовлетворяет неравенству "-a < корень из 77", это "-8".

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос