
Вопрос задан 29.04.2019 в 11:09.
Предмет Алгебра.
Спрашивает Вялков Гриша.
Выполните разложение многочлена на множители 1) 10x^2-3x-42) 64(2-5a)^2-25(6a-5)^2


Ответы на вопрос

Отвечает Mixaylova Dorotka.
--------------------------------------



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
1) Разложение многочлена 10x^2-3x-4 на множители: Сначала найдем корни уравнения 10x^2-3x-4=0 с помощью дискриминанта: D = (-3)^2 - 4*10*(-4) = 9 + 160 = 169 x1,2 = (-(-3) ± √169) / (2*10) = (3 ± 13) / 20 x1 = (3 + 13) / 20 = 16 / 20 = 4/5 x2 = (3 - 13) / 20 = -10 / 20 = -1/2
Теперь разложим многочлен на множители: 10x^2-3x-4 = 10(x - 4/5)(x + 1/2)
2) Разложение многочлена 64(2-5a)^2-25(6a-5)^2 на множители: Для начала раскроем квадраты: 64(2-5a)^2-25(6a-5)^2 = 64(4 - 20a + 25a^2) - 25(36a^2 - 60a + 25)
Теперь разложим каждое слагаемое на множители: 64(4 - 20a + 25a^2) - 25(36a^2 - 60a + 25) = 64(5a - 2)^2 - 25(5 - 6a)^2
Таким образом, разложение многочлена 64(2-5a)^2-25(6a-5)^2 на множители равно 64(5a - 2)^2 - 25(5 - 6a)^2.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili