Вопрос задан 28.04.2019 в 18:51. Предмет Алгебра. Спрашивает Дмитриева Наташа.

Сократите дробь (3b^2 - 5ab - 2a^2) / (ab-2a^2)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Никитина-Дикова Ольга.
Знаменатель раскладываем в вид а*(b-2a)
числитель раскладываем
(b^2-2a*b)+2b^2-3a*b-a^2=
b*(b-2*a)+2(b^2-1,5a*b-0,5a^2)=b*(b-2*a)+2(b-2*a)(b+0,25*a)=(b-2a)*(b+2*(b+0,25*a))=(b-2*a)(3*b+0,5*a)

в числителе и знаменателе сокращаем (b-2a), получаем:
(3*b+0,5*a)/a=3b/a +0,5 .
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы сократить данную дробь, мы должны найти общие множители для числителя и знаменателя и сократить их. Давайте проанализируем каждую часть дроби.

Числитель: 3b^2 - 5ab - 2a^2

Заметим, что все коэффициенты в числителе являются целыми числами. Мы можем видеть, что числитель не может быть просто сокращен, поэтому мы оставляем его в текущем виде.

Знаменатель: ab - 2a^2

Теперь давайте разложим оба члена знаменателя на множители:

ab - 2a^2 = a * b - 2 * a * a

Мы видим, что оба члена имеют общий множитель "a". Таким образом, мы можем сократить "a" в знаменателе.

Теперь наша дробь выглядит следующим образом:

(3b^2 - 5ab - 2a^2) / (ab - 2a^2) = (3b^2 - 5ab - 2a^2) / (a * b - 2 * a * a)

= (3b^2 - 5ab - 2a^2) / (a(b - 2a))

Мы успешно сократили "a" в знаменателе. Итак, окончательный ответ:

(3b^2 - 5ab - 2a^2) / (ab - 2a^2) = (3b^2 - 5ab - 2a^2) / (a(b - 2a))

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос