
Найдите площадь криволинейной трапеции ограниченной линиями f(x)=x^2-4x+4 y=0 x=1 x=0 СРОЧНО


Ответы на вопрос




Finding the Area of the Curvilinear Trapezoid
To find the area of the curvilinear trapezoid bounded by the lines \( f(x) = x^2 - 4x + 4 \), \( y = 0 \), \( x = 1 \), and \( x = 0 \), we can use the definite integral of the absolute difference between the two functions.
The formula for finding the area of the region between two curves \( f(x) \) and \( g(x) \) from \( x = a \) to \( x = b \) is given by:
\[ A = \int_{a}^{b} |f(x) - g(x)| \, dx \]
In this case, the area of the curvilinear trapezoid can be found by integrating the absolute difference between the functions \( f(x) = x^2 - 4x + 4 \) and \( y = 0 \) from \( x = 0 \) to \( x = 1 \).
Calculating the Area
The area \( A \) of the curvilinear trapezoid can be calculated using the following definite integral:
\[ A = \int_{0}^{1} |(x^2 - 4x + 4) - 0| \, dx \]
Solving the integral will give us the area of the curvilinear trapezoid.
Result
The area of the curvilinear trapezoid bounded by the given lines is 5.33 square units.This calculation is based on the definite integral of the absolute difference between the functions \( f(x) = x^2 - 4x + 4 \) and \( y = 0 \) from \( x = 0 \) to \( x = 1\).
Let me know if there's anything else you'd like to know!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili