Вопрос задан 28.04.2019 в 07:36. Предмет Алгебра. Спрашивает Поталай Ника.

Неопределенный интеграл (2x^9-3x-2)dx

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Горт Маргарита.
 \int\limits{2x^9-3x-2} \, dx =2 \frac{x^{10}}{10} -3 \frac{x^2}{2}-2x+C = 0,2x^{10}-1,5x^2 -2x+C
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти неопределенный интеграл от функции (2x^9 - 3x - 2)dx, нужно проинтегрировать каждый член по отдельности.

Интеграл от 2x^9dx будет равен (2/10)x^10 + C1, где C1 - произвольная постоянная.

Интеграл от -3xdx будет равен (-3/2)x^2 + C2, где C2 - произвольная постоянная.

И интеграл от -2dx будет равен -2x + C3, где C3 - произвольная постоянная.

Таким образом, неопределенный интеграл от функции (2x^9 - 3x - 2)dx будет равен:

(2/10)x^10 - (3/2)x^2 - 2x + C, где C = C1 + C2 + C3 - произвольная постоянная.

Таким образом, это будет окончательный ответ на неопределенный интеграл от данной функции.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос