Вопрос задан 27.04.2019 в 01:14. Предмет Алгебра. Спрашивает Адаева Катя.

Изветно, что f(x)=kx+b, причём f(3)=7 и f(-1)=-5. Найдите значения k и b.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абдилманатов Шалкар.
7=к3+б -5=-к+б
к=б+5
7=3б+15+б
4б=-8
б=-2
к=3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи воспользуемся информацией о значениях функции f(x) при двух разных значениях x.

Известно, что f(3) = 7 и f(-1) = -5.

Мы можем использовать эти значения, чтобы составить систему уравнений и найти значения k и b.

Сначала подставим x = 3 в выражение f(x) = kx + b:

f(3) = k * 3 + b = 7

Теперь подставим x = -1:

f(-1) = k * (-1) + b = -5

Теперь мы имеем систему уравнений:

k * 3 + b = 7 k * (-1) + b = -5

Мы можем решить эту систему уравнений, используя метод подстановки или метод исключения. Давайте воспользуемся методом исключения.

Вычтем второе уравнение из первого, чтобы избавиться от переменной b:

(k * 3 + b) - (k * (-1) + b) = 7 - (-5)

Теперь упростим это уравнение:

3k + b - (-k) - b = 7 + 5 3k + k = 12 4k = 12 k = 12 / 4 k = 3

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос