
-х в квадратe +7х-10=0 4х в квадратe +4х+1=0 1. х в квадратe -6х-16=0 2. х в квадратe +2х-15=0 3.
6х в квадратe -7+1=0 4. 7х в квадратe +9х+2=0 5. 3х в квадратe -12х=0 6. 4х в квадратe -х=0 7. 2х в квадратe -32=0 помогитe пожалуйста, нe успeваю рeшить

Ответы на вопрос

x1= 5
X2= 2
2)D=0
x=(-1/2)
3) D= 10
x1=(-2)
x2=8
4)D=8
x1=(-5)
x2=3
5)6x^2=6
x=+1;(-1)
6) D=5
x1=(-1)
x2= (-2/7)
7) x(3x-12)=0
x1=0
x2=4
8) x(4x-1)=0
x1=0
x2=1/4
9) 2x^2=32
x^2=16
x1=4
x2=(-4)



Quadratic Equations
To solve the given quadratic equations, we can use the quadratic formula or factorization method. Let's solve each equation step by step.1. Equation: x^2 + 7x - 10 = 0 To solve this equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
Here, a = 1, b = 7, and c = -10. Substituting these values into the quadratic formula, we get:
x = (-7 ± √(7^2 - 4(1)(-10))) / (2(1))
Simplifying further:
x = (-7 ± √(49 + 40)) / 2
x = (-7 ± √89) / 2
Therefore, the solutions to the equation are:
x = (-7 + √89) / 2 and x = (-7 - √89) / 2 [[1]].
2. Equation: x^2 + 4x + 1 = 0 To solve this equation, we can again use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
Here, a = 1, b = 4, and c = 1. Substituting these values into the quadratic formula, we get:
x = (-4 ± √(4^2 - 4(1)(1))) / (2(1))
Simplifying further:
x = (-4 ± √(16 - 4)) / 2
x = (-4 ± √12) / 2
Therefore, the solutions to the equation are:
x = (-4 + √12) / 2 and x = (-4 - √12) / 2 [[2]].
3. Equation: 6x^2 - 7x + 1 = 0 To solve this equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
Here, a = 6, b = -7, and c = 1. Substituting these values into the quadratic formula, we get:
x = (-(-7) ± √((-7)^2 - 4(6)(1))) / (2(6))
Simplifying further:
x = (7 ± √(49 - 24)) / 12
x = (7 ± √25) / 12
Therefore, the solutions to the equation are:
x = (7 + √25) / 12 and x = (7 - √25) / 12 [[3]].
4. Equation: 7x^2 + 9x + 2 = 0 To solve this equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
Here, a = 7, b = 9, and c = 2. Substituting these values into the quadratic formula, we get:
x = (-9 ± √(9^2 - 4(7)(2))) / (2(7))
Simplifying further:
x = (-9 ± √(81 - 56)) / 14
x = (-9 ± √25) / 14
Therefore, the solutions to the equation are:
x = (-9 + √25) / 14 and x = (-9 - √25) / 14 [[4]].
5. Equation: 3x^2 - 12x = 0 To solve this equation, we can factor out the common term x:
x(3x - 12) = 0
Setting each factor equal to zero, we get:
x = 0 and 3x - 12 = 0
Solving the second equation for x:
3x = 12
x = 4
Therefore, the solutions to the equation are:
x = 0 and x = 4 [[5]].
6. Equation: 4x^2 - x = 0 To solve this equation, we can factor out the common term x:
x(4x - 1) = 0
Setting each factor equal to zero, we get:
x = 0 and 4x - 1 = 0
Solving the second equation for x:
4x = 1
x = 1/4
Therefore, the solutions to the equation are:
x = 0 and x = 1/4 [[6]].
7. Equation: 2x^2 - 32 = 0 To solve this equation, we can factor out the common term 2:
2(x^2 - 16) = 0
Setting each factor equal to zero, we get:
x^2 - 16 = 0
This equation can be further factored as the difference of squares:
(x - 4)(x + 4) = 0
Setting each factor equal to zero, we get:
x - 4 = 0 and x + 4 = 0
Solving for x, we get:
x = 4 and x = -4
Therefore, the solutions to the equation are:
x = 4 and x = -4 [[7]].
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili