Вопрос задан 26.04.2019 в 22:52. Предмет Алгебра. Спрашивает Шалесный Артём.

-х в квадратe +7х-10=0 4х в квадратe +4х+1=0 1. х в квадратe -6х-16=0 2. х в квадратe +2х-15=0 3.

6х в квадратe -7+1=0 4. 7х в квадратe +9х+2=0 5. 3х в квадратe -12х=0 6. 4х в квадратe -х=0 7. 2х в квадратe -32=0 помогитe пожалуйста, нe успeваю рeшить
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Антоненко Артём.
1) D=3^2
x1= 5
X2= 2
2)D=0
x=(-1/2)
3) D= 10
x1=(-2)
x2=8
4)D=8
x1=(-5)
x2=3
5)6x^2=6
x=+1;(-1)
6) D=5
x1=(-1)
x2= (-2/7)
7) x(3x-12)=0
x1=0
x2=4
8) x(4x-1)=0
x1=0
x2=1/4
9) 2x^2=32
x^2=16
x1=4
x2=(-4)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Quadratic Equations

To solve the given quadratic equations, we can use the quadratic formula or factorization method. Let's solve each equation step by step.

1. Equation: x^2 + 7x - 10 = 0 To solve this equation, we can use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

Here, a = 1, b = 7, and c = -10. Substituting these values into the quadratic formula, we get:

x = (-7 ± √(7^2 - 4(1)(-10))) / (2(1))

Simplifying further:

x = (-7 ± √(49 + 40)) / 2

x = (-7 ± √89) / 2

Therefore, the solutions to the equation are:

x = (-7 + √89) / 2 and x = (-7 - √89) / 2 [[1]].

2. Equation: x^2 + 4x + 1 = 0 To solve this equation, we can again use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

Here, a = 1, b = 4, and c = 1. Substituting these values into the quadratic formula, we get:

x = (-4 ± √(4^2 - 4(1)(1))) / (2(1))

Simplifying further:

x = (-4 ± √(16 - 4)) / 2

x = (-4 ± √12) / 2

Therefore, the solutions to the equation are:

x = (-4 + √12) / 2 and x = (-4 - √12) / 2 [[2]].

3. Equation: 6x^2 - 7x + 1 = 0 To solve this equation, we can use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

Here, a = 6, b = -7, and c = 1. Substituting these values into the quadratic formula, we get:

x = (-(-7) ± √((-7)^2 - 4(6)(1))) / (2(6))

Simplifying further:

x = (7 ± √(49 - 24)) / 12

x = (7 ± √25) / 12

Therefore, the solutions to the equation are:

x = (7 + √25) / 12 and x = (7 - √25) / 12 [[3]].

4. Equation: 7x^2 + 9x + 2 = 0 To solve this equation, we can use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

Here, a = 7, b = 9, and c = 2. Substituting these values into the quadratic formula, we get:

x = (-9 ± √(9^2 - 4(7)(2))) / (2(7))

Simplifying further:

x = (-9 ± √(81 - 56)) / 14

x = (-9 ± √25) / 14

Therefore, the solutions to the equation are:

x = (-9 + √25) / 14 and x = (-9 - √25) / 14 [[4]].

5. Equation: 3x^2 - 12x = 0 To solve this equation, we can factor out the common term x:

x(3x - 12) = 0

Setting each factor equal to zero, we get:

x = 0 and 3x - 12 = 0

Solving the second equation for x:

3x = 12

x = 4

Therefore, the solutions to the equation are:

x = 0 and x = 4 [[5]].

6. Equation: 4x^2 - x = 0 To solve this equation, we can factor out the common term x:

x(4x - 1) = 0

Setting each factor equal to zero, we get:

x = 0 and 4x - 1 = 0

Solving the second equation for x:

4x = 1

x = 1/4

Therefore, the solutions to the equation are:

x = 0 and x = 1/4 [[6]].

7. Equation: 2x^2 - 32 = 0 To solve this equation, we can factor out the common term 2:

2(x^2 - 16) = 0

Setting each factor equal to zero, we get:

x^2 - 16 = 0

This equation can be further factored as the difference of squares:

(x - 4)(x + 4) = 0

Setting each factor equal to zero, we get:

x - 4 = 0 and x + 4 = 0

Solving for x, we get:

x = 4 and x = -4

Therefore, the solutions to the equation are:

x = 4 and x = -4 [[7]].

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос