Вопрос задан 14.04.2019 в 09:04. Предмет Алгебра. Спрашивает Повенская Анна.

Найдите стационарные точки функции y=cos2x+2cosx, пожалуйста. Точку x= πn, n ∈ Z получается найти.

В ответе указана также x=±(2π)/3+2πn, n ∈ Z.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Онянова Ирина.
По определению стационарная точка - точка, в которой производная функции = 0.
Соответственно, для нахождения стационарных точек функции y=cos2x+2cosx найдём её первую производную и приравняем её к нулю:
y'=(cos2x+2cosx)'=(cos2x)'+(2cosx)'=
=(cos2x)'*(2x)'+2*(cosx)'=-sin2x*2*(x)'+2*(-sinx)=
=-2sin2x*1-2sinx=-4sinxcosx-2sinx=-2sinx*(2cosx+1)

-2sinx*(2cosx+1)=0
Отсюда sinx=0 ⇒  x= \pi n, n∈Z и cosx=- \frac{1}{2} ⇒  x=(+-)arccos(- \frac{1}{2})+2 \pi k=
=(+-)( \pi-arccos(\frac{1}{2}))+2 \pi k=(+-)( \pi - \frac{ \pi }{3} )+2 \pi k=(+-)  \frac{2 \pi }{3} +2 \pi k, k∈Z.

=> стационарными точками являются x=πn;2π/3+2πk, n∈Z,k∈Z.
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос