Вопрос задан 07.05.2018 в 14:15. Предмет Алгебра. Спрашивает Стрілець Віталій.

Решить в целых числах уравнение:x² = y² + 6y + 21

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шлык Полина.

Tx^2=y^2+6y+21,
x^2=y^2+6y+9+12,
x^2=(y+3)^2+12,
x^2-(y+3)^2=12, пусть t=y+3
(x+t)(x-t)=12.
Если x  и t целые, то x+t, x-t целые числа, пусть x+t=k,x-t=m, тогда
x=(k+m)/2
t=(k-m)/2, причем k*m=12
Так как числа x и t целые, то k и m одновременно могут быть либо четными, либо нечетными. Учитывая, что 1*12=12, 2*6=12,3*4=12, то последнему условия удовлетворяют толки следующие целые числа (k,m): (2,6);(6,2);(-2;-6);(-6,-2). Откуда
x=4, y=t-3=-2-3=-5
x=4, y=t-3=2-3=-1
x=-4, y=t-3=2-3=1
x=-4, y=t-3= -2-3=-5


0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос