Вопрос задан 28.03.2019 в 07:39. Предмет Алгебра. Спрашивает Васильев Дима.

|x^2-3|x|+1|=1 решите пожалуйста!!! Я не понимаю

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гаффаров Марат.
Уберём первый и последний модули, получится два выражения:
с ..=1 и ..=-1
Это нужно запомнить. Избавляемся от модуля:

1)  x^{2} -3|x|+1=1
 x^{2} -3|x|=0
2)  x^{2} -3|x|+1=-1
 x^{2} -3|x|=-2

Теперь смотрим на модуль x (|x|). Модуль - это само число. Он может быть положительным и отрицательным. На этом нужно взять две вариации, когда:
|x| = 1 и |x| = -1

Получим систему:
 \left \{ {{x^{2} -3x=0,  x \geq 0} \atop {x^{2}-3(-x)=0, x \ \textless \  0}} \right.
Решаем каждый пример путём вынесения x за скобки:
1) x(x-3)=0 ⇒
x = 0, x≥0
x = 3, x≥0
2) x(x+3)=0 ⇒
x = 0, x<0 - условие не выполняется. 0 не может быть меньше 0. 
x = -3, x<0
После этого действия нужно обязательно "отсеять" найденные решения путём ОДЗ (я после каждого найденного решения написал условия)
x = 0
x = 3
x = -3

Также делаем и для второго, получим корни:
x = 2
x = 1
x = -1
x = -2

Ответ: x = -2, x = -1, x = 0, x = 1, x = 2, x = 3

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос