Вопрос задан 21.03.2019 в 17:34. Предмет Алгебра. Спрашивает Пряничников Александр.

Найдите угол между векторами АВ и АС,если А(−2; 1),В(2; 5),С(1;−2).

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Андрущенко Коля.
A(-2;1)
B(2;5)
C(1;-2)
Находим координаты векторов
AB (4;4)
AC (3;-3)

cosα =  \frac{AB*AC}{|AB||AC|}

Находим длины векторов
|AB| =  \sqrt{16+16} = 4 \sqrt{2}
|AC| =  \sqrt{9+9} = 3 \sqrt{2}
Находим скалярное произведение векторов
AB*AC = 12-12 = 0
                
cosα =  \frac{0}{4\sqrt2 * 3\sqrt2} = 0
∠α = arccos(0) = 90°

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос