
Вопрос задан 21.03.2019 в 06:44.
Предмет Алгебра.
Спрашивает Жашуева Лаура.
Найти четыре числа, образующие геометрическую прогрессию, у которой третий член больше первого на
9, а второй больше четвертого на 18

Ответы на вопрос

Отвечает Урюпина Анастасия.
Используя тот факт, что числа составляют геометрическую прогрессию, запишем их как b, bq, bq2, bq3.
По условию:
1) bq2 = b + 9.
2) bq = bq3 + 18.
Домножаем первое уравнение на q и складываем со вторым:
9q + 18 = 0.
Откуда q = -2. Из первого уравнения находим b. b = 3.
Теперь легко найдем все числа: 3, -6, 12, -24.
Ответ: 3, -6, 12, -24.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili