Вопрос задан 01.05.2018 в 16:06. Предмет Алгебра. Спрашивает Габдуллина Элина.

Как решить показательное уравнение?


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тютюнников Илья.

6^{2x}+6^{-2x}=20
\\36^x+\frac{1}{36^x}-20=0
\\(36^x)^2-20*36^x+1=0
\\36^{x_{_1}}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{20+\sqrt{400-4}}{2}=\frac{20+\sqrt{396}}{2}=10+\frac{6\sqrt{11}}{2}=10+3\sqrt{11}
\\x_{_1}=log_{_{36}}(10+3\sqrt{11})
\\36^{x_{_2}}=\frac{-b-\sqrt{b^2-4ac}}{2a}=10-3\sqrt{11}
\\x_{_2}=log_{_{36}}(10-3\sqrt{11})
\\OTBET: x\in \{log_{_{36}}(10-3\sqrt{11});log_{_{36}}(10+3\sqrt{11})\}
Графическое решение на изображении


0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос