
Х+у=2 Х²+2у=19 Решите систему уравнений


Ответы на вопрос

y=2-x
D=b*b -4ac=4+60=64
x=(2+8)/2=5 y=2-5=-3
x=(2-8)/2=-3 y=2+3=5



Problem Analysis
We are given a system of equations: 1. x + y = 2 2. x^2 + 2y = 19We need to find the values of x and y that satisfy both equations.
Solution
To solve this system of equations, we can use the substitution method or the elimination method. Let's use the substitution method.From equation 1, we can express x in terms of y: 1. x = 2 - y
Substituting this value of x into equation 2, we get: 2. (2 - y)^2 + 2y = 19
Expanding equation 2, we have: 3. 4 - 4y + y^2 + 2y = 19
Combining like terms, we get: 4. y^2 - 2y - 15 = 0
Now, we can solve this quadratic equation for y. Factoring equation 4, we have: 5. (y - 5)(y + 3) = 0
Setting each factor equal to zero, we get two possible values for y: 6. y - 5 = 0 or y + 3 = 0
Solving these equations, we find: 7. y = 5 or y = -3
Now, we can substitute these values of y back into equation 1 to find the corresponding values of x.
For y = 5: Substituting y = 5 into equation 1, we get: 8. x + 5 = 2 Solving for x, we find: 9. x = -3
For y = -3: Substituting y = -3 into equation 1, we get: 10. x - 3 = 2 Solving for x, we find: 11. x = 5
Therefore, the solutions to the system of equations are: (x, y) = (-3, 5) and (5, -3).
Conclusion
The solutions to the given system of equations are (x, y) = (-3, 5) and (5, -3).

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili