
Теплоход проходит о течению реки до пункта назначения 221 км и после стоянки возвращается в пункт
отправления) скорость теплохода в стоячей воде- 15 км час. стоянка длилась 7 часов. наи скорость течения, если теплоход вернулся домой через 37 часов после отплытия.

Ответы на вопрос

пусть х км/ч - скорость течения, тогда:
15 + х км/ч - скорость по течению
15 - х км/ч - скорость против течения
Составим уравнение:
Ответ: скорость течения 2 км/ч



Обозначим скорость течения реки за (х) км/час, тогда скорость теплохода по течению реки составляет: (15+х) км/час;
а скорость теплохода против течения реки составляет: (15-х)км/час
Время в пути теплохода по течению реки в пункт назначения составляет:
221/(15+х) час
Время в пути против течения (возвращение домой) составляет:
221/(15-х) час
Общее время в пути с учётом стоянки составило 37 часов и это можно выразить уравнением:
221/(15+х)+221/(15-х)+7=37
221/(15+х)+221/(15-х)+7-37=0
221/(15+х)+221/(15-х)-30=0
(15-х)*221+(15+х)*221-(15+х)*(15-х)*30
3315-221х+3315+221х-6750+30х^2=0
30x^2-120=0
30x^2=120
x^2=120/30
x^2=4
x1^2=+-√4
x1=2
x2=-2 - не соответствует условию задачи
Ответ: Скорость течения реки равна 2 км/час



Problem Analysis
We are given the following information: - A boat travels upstream on a river for a distance of 221 km to its destination. - After a 7-hour stop, the boat returns to its starting point. - The boat's speed in still water is 15 km/h. - We need to find the speed of the current if the boat returns home 37 hours after departure.
Solution
To solve this problem, we can use the concept of relative velocity. Let's assume the speed of the current is x km/h.
When the boat is traveling upstream, its effective speed is reduced by the speed of the current. So, the boat's speed relative to the ground is (15 - x) km/h.
When the boat is traveling downstream, its effective speed is increased by the speed of the current. So, the boat's speed relative to the ground is (15 + x) km/h.
We know that the boat travels a total distance of 221 km to its destination and then returns to its starting point. The total time taken for the round trip is 37 hours.
Let's calculate the time taken for the upstream journey and the downstream journey separately.
Upstream Journey
The distance traveled during the upstream journey is 221 km. The boat's speed relative to the ground is (15 - x) km/h.
Using the formula time = distance / speed, we can calculate the time taken for the upstream journey.
Time taken for the upstream journey = 221 km / (15 - x) km/h
Downstream Journey
The distance traveled during the downstream journey is also 221 km. The boat's speed relative to the ground is (15 + x) km/h.
Using the formula time = distance / speed, we can calculate the time taken for the downstream journey.
Time taken for the downstream journey = 221 km / (15 + x) km/h
Total Time
The total time taken for the round trip is 37 hours. This includes the time taken for the upstream journey, the time taken for the downstream journey, and the 7-hour stop.
Total time = Time taken for the upstream journey + Time taken for the downstream journey + 7 hours
37 hours =


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili