Вопрос задан 26.02.2019 в 20:39. Предмет Алгебра. Спрашивает Достоевский Алексей.

ПОМОГИТЕЕЕ ПЛИИИС докажите что при любом значении переменной данное выражение принимает только

положительные значения. какое наименьшее значение и при каком значении х принимает это выражение: х^2+6x+13
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ходырева Катя.
При х = -2: 6х = -12 что больше чем -2^2 = 4, но при этом меньше чем +13 => при х=-2: значение больше 0.
В случае если х больше -2, то х^2 больше 6х, что даёт нам понять что все значения будут положительные
0 0
Отвечает Юшин Дениска.
У=х²+6х+13
графиком уравнения является парабола ,так как коэффициент при х² больше 0 , в нашем случае он равен 1, значит ветви параболы направленны вверх ., при решении уравнения х²+6х +13=0,
 D=36-52= - 16<0  дискриминант меньше 0, значит уравнение не имеет действительных корней, т.o парабола не пересекает ось ОХ (график расположен выше оси ОХ ), следовательно  при всех значениях переменной х , значение функции будет принимать только  положительные значения

наименьшее значение  находится на вершине параболы ее координаты
х=-b/2a =-6/(2*1)= -3
y=(-3)²+6*(-3)+13=4 - наименьшее значение функции

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос