
При каком значении переменной трехчлен:а) у (в квадрате) -4у+9 принимает наименьшее значение?б) -х
(в квадрате) +6х-14 принимает наибольшее значение?ответьте и помогита пожалуйста

Ответы на вопрос

через дискрименант реши



Finding the Minimum Value of the Expression a) у^2 - 4у + 9
To find the minimum value of the expression у^2 - 4у + 9, we can use the concept of completing the square.
The given expression is a quadratic expression in the variable у. The general form of a quadratic expression is ax^2 + bx + c, where a, b, and c are constants. In this case, a = 1, b = -4, and c = 9.
To find the minimum value, we need to determine the vertex of the quadratic function. The vertex of a quadratic function in the form y = ax^2 + bx + c is given by the coordinates (h, k), where h = -b/2a and k is the minimum value of the function.
For the given expression у^2 - 4у + 9, we have a = 1 and b = -4. Plugging these values into the formula, we can find the x-coordinate of the vertex:
h = -(-4) / (2 * 1) = 4 / 2 = 2
To find the y-coordinate of the vertex, we substitute the x-coordinate (h = 2) into the expression:
у^2 - 4у + 9 = (2)^2 - 4(2) + 9 = 4 - 8 + 9 = 5
Therefore, the minimum value of the expression у^2 - 4у + 9 is 5.
Finding the Maximum Value of the Expression b) -х^2 + 6х - 14
To find the maximum value of the expression -х^2 + 6х - 14, we can again use the concept of completing the square.
The given expression is a quadratic expression in the variable х. The general form of a quadratic expression is ax^2 + bx + c, where a, b, and c are constants. In this case, a = -1, b = 6, and c = -14.
To find the maximum value, we need to determine the vertex of the quadratic function. The vertex of a quadratic function in the form y = ax^2 + bx + c is given by the coordinates (h, k), where h = -b/2a and k is the maximum value of the function.
For the given expression -х^2 + 6х - 14, we have a = -1 and b = 6. Plugging these values into the formula, we can find the x-coordinate of the vertex:
h = -6 / (2 * -1) = 6 / -2 = -3
To find the y-coordinate of the vertex, we substitute the x-coordinate (h = -3) into the expression:
-х^2 + 6х - 14 = -(-3)^2 + 6(-3) - 14 = -9 - 18 - 14 = -41
Therefore, the maximum value of the expression -х^2 + 6х - 14 is -41.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili