
Вопрос задан 26.02.2019 в 12:37.
Предмет Алгебра.
Спрашивает Ковригина Ксения.
упростить выражение х+|х| если х>0 помогите решить срочно


Ответы на вопрос

Отвечает Александрова Алиса.
Т.к. х>0, то модуль раскрываем с положительным знаком, следовательно x+|x|=x+x=2x



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте разберемся с упрощением выражения \(x \cdot |x|\), при условии \(x > 0\).
Заметим, что если \(x > 0\), то \(|x| = x\), так как абсолютное значение положительного числа равно самому числу. Таким образом, выражение упрощается до:
\[x \cdot |x| = x \cdot x = x^2.\]
Так что, если \(x > 0\), то \(x \cdot |x| = x^2\).
Надеюсь, это помогло! Если у вас есть дополнительные вопросы или что-то неясно, пожалуйста, дайте мне знать.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili