
X⁴+x²-12=0 порешите мне


Ответы на вопрос




Solving the Equation x⁴ + x² - 12 = 0
To solve the equation x⁴ + x² - 12 = 0, we can use factoring or the quadratic formula. Let's go through both methods.
Method 1: Factoring
To factor the equation x⁴ + x² - 12 = 0, we can treat it as a quadratic equation in terms of x². Let's substitute y = x²:
y² + y - 12 = 0
Now we can factor this quadratic equation:
(y + 4)(y - 3) = 0
Setting each factor equal to zero, we have:
y + 4 = 0 or y - 3 = 0
Solving for y, we get:
y = -4 or y = 3
Substituting back y = x², we have:
x² = -4 or x² = 3
Taking the square root of both sides, we get:
x = ±2i or x = ±√3
Therefore, the solutions to the equation x⁴ + x² - 12 = 0 are x = ±2i and x = ±√3.
Method 2: Quadratic Formula
Alternatively, we can solve the equation x⁴ + x² - 12 = 0 using the quadratic formula. The quadratic formula states that for an equation of the form ax² + bx + c = 0, the solutions for x can be found using the formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = 1, and c = -12. Substituting these values into the quadratic formula, we have:
x = (-(1) ± √((1)² - 4(1)(-12))) / (2(1))
Simplifying further:
x = (-1 ± √(1 + 48)) / 2
x = (-1 ± √49) / 2
x = (-1 ± 7) / 2
This gives us two possible solutions:
x = (-1 + 7) / 2 = 6 / 2 = 3
x = (-1 - 7) / 2 = -8 / 2 = -4
Therefore, the solutions to the equation x⁴ + x² - 12 = 0 are x = 3 and x = -4.
Summary
The solutions to the equation x⁴ + x² - 12 = 0 are x = ±2i, x = ±√3, x = 3, and x = -4.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili