
Решить предел


Ответы на вопрос




Solving a Limit
To solve the limit, we need to evaluate the expression and find the value it approaches as the variable approaches a certain value. The given limit is:
Lim x → 1 (4x^4 - 5x^2 + 1) / (x^2 - 1)
To solve this limit, we can factorize the numerator and denominator and simplify the expression. Let's break it down step by step:
Step 1: Factorize the numerator and denominator: - The numerator can be factored as (2x^2 - 1)(2x^2 - 1). - The denominator can be factored as (x - 1)(x + 1).
Step 2: Simplify the expression: - Now, we can cancel out the common factors in the numerator and denominator. - After canceling out the common factors, we are left with (2x^2 - 1) / (x + 1).
Step 3: Evaluate the limit: - To find the limit as x approaches 1, we substitute x = 1 into the simplified expression. - Plugging in x = 1, we get (2(1)^2 - 1) / (1 + 1) = (2 - 1) / 2 = 1/2.
Therefore, the limit of the given expression as x approaches 1 is 1/2.
Please note that the provided solution is based on the given expression and the steps involved in solving it.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili