
Проверьте справедливость равенства: а) sin93 - cos63 = sin33 б) cos14 - sin16 = cos46


Ответы на вопрос

b)cos(60-46)-sin(46-30)=cos60cos46+sin60sin46-sin46cos30+cos46sin30=(cos46)/2+(cos46)/2+sin60sin46-sin60sin46=cos46



а) Для проверки справедливости равенства sin93 - cos63 = sin33, воспользуемся формулами сложения и вычитания синуса и косинуса:
sin(A - B) = sinAcosB - cosAsinB
Подставим значения в формулу:
sin93 - cos63 = sin(93 - 63) = sin30
Теперь посмотрим на значение sin30. Мы знаем, что sin30 = 0.5.
Таким образом, равенство sin93 - cos63 = sin33 не справедливо, так как sin30 ≠ 0.5.
б) Для проверки справедливости равенства cos14 - sin16 = cos46, также воспользуемся формулами сложения и вычитания синуса и косинуса:
cos(A - B) = cosAcosB + sinAsinB
Подставим значения в формулу:
cos14 - sin16 = cos(14 - 16) = cos(-2)
Чтобы найти значение cos(-2), мы можем использовать свойство четности косинуса. Так как cos(-x) = cos(x), то cos(-2) = cos(2).
Теперь посмотрим на значение cos2. Оно равно приблизительно 0.99939.
Таким образом, равенство cos14 - sin16 = cos46 не справедливо, так как cos(2) ≠ cos46.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili