Вопрос задан 23.02.2019 в 01:26. Предмет Алгебра. Спрашивает Кувайцев Егор.

Розв'яжіть рівння (3+x)2 +x²-9=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сычёва Дарья.
Решение на прикрепленном фото
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання даного квадратного рівняння, спочатку розкриємо дужки виразу (3+x)², щоб отримати поліноміальний вираз:

(3+x)² + x² - 9 = 0

Розкриваємо квадрат (3+x)², використовуючи формулу квадрату суми:

(3+x)² = (3+x)(3+x) = 9 + 3x + 3x + x² = 9 + 6x + x²

Тепер підставимо отриманий вираз у рівняння:

(9 + 6x + x²) + x² - 9 = 0

Спрощуємо вираз:

2x² + 6x = 0

Тепер рівняння можна спростити поділом на 2:

x² + 3x = 0

Тепер ми можемо факторизувати цей вираз, витягнувши спільний множник x:

x(x + 3) = 0

Отримали два множники, які добуток дорівнює нулю. Це означає, що один з множників повинен дорівнювати нулю:

x = 0 або x + 3 = 0

З цього ми отримуємо два розв'язки:

x₁ = 0 та x₂ = -3

Таким чином, рівняння (3+x)² + x² - 9 = 0 має два розв'язки: x₁ = 0 та x₂ = -3.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос