Вопрос задан 22.02.2019 в 19:27. Предмет Алгебра. Спрашивает Гуфранова Надежда.

Решите системы уравнений

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ehmedov Amin.
'"'"'")((;);)_;(;)(-(_;))_после линии не смотри что написано это я так
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving Systems of Equations

To solve systems of equations, we need to find the values of the variables that satisfy all the equations in the system. Here are a few examples of systems of equations and their solutions:

# Example 1:

Equations: - 2x - y = 7 - x^2 - xy = 12

To solve this system, we can use substitution or elimination methods. Let's use the substitution method:

From the first equation, we can express y in terms of x: - y = 2x - 7

Substituting this value of y into the second equation: - x^2 - x(2x - 7) = 12 - x^2 - 2x^2 + 7x = 12 - -x^2 + 7x - 12 = 0

Now, we can solve this quadratic equation. Factoring or using the quadratic formula, we find: - x = 3 or x = 4

Substituting these values back into the first equation, we can find the corresponding values of y: - For x = 3, y = 2(3) - 7 = -1 - For x = 4, y = 2(4) - 7 = 1

Therefore, the solutions to the system of equations are (3, -1) and (4, 1).

# Example 2:

Equations: - 3x - y = 3 - 3x - 2y = 0

To solve this system, we can use the elimination method. Subtracting the first equation from the second equation, we eliminate the x variable: - (3x - 2y) - (3x - y) = 0 - 3 - -y + 2y = -3 - y = 3

Substituting this value of y back into the first equation: - 3x - 3 = 3 - 3x = 6 - x = 2

Therefore, the solution to the system of equations is (2, 3).

# Example 3:

Equations: - 2ab - 3a/b = 15 - ab + a/b = 10

To solve this system, we can use the substitution method. From the second equation, we can express a/b in terms of ab: - a/b = 10 - ab

Substituting this value of a/b into the first equation: - 2ab - 3(10 - ab) = 15 - 2ab - 30 + 3ab = 15 - 5ab - 30 = 15 - 5ab = 45 - ab = 9

Substituting this value of ab back into the second equation: - 9 + a/b = 10 - a/b = 1

Now, we have two equations: - ab = 9 - a/b = 1

From the second equation, we can express a in terms of b: - a = b

Substituting this value of a back into the first equation: - b^2 = 9 - b = ±3

Therefore, the solutions to the system of equations are (3, 3) and (-3, -3).

These are just a few examples of solving systems of equations. Depending on the specific equations, different methods may be used, such as substitution, elimination, or matrix methods.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос