
A)2cos²-5sin+1=0 B) sin4scos2x=sin2xcos4x C) cos2x-sinx=0


Ответы на вопрос




A) 2cos² - 5sin + 1 = 0
To solve the equation 2cos² - 5sin + 1 = 0, we can use some trigonometric identities and techniques. Let's break it down step by step:
Step 1: Rearrange the equation to isolate the cosine term: 2cos² - 5sin + 1 = 0 2cos² = 5sin - 1
Step 2: Use the Pythagorean identity sin² + cos² = 1 to express sin in terms of cos: 2cos² = 5(1 - cos²) - 1 2cos² = 5 - 5cos² - 1 2cos² + 5cos² = 5 - 1 7cos² = 4
Step 3: Divide both sides by 7 to solve for cos²: cos² = 4/7
Step 4: Take the square root of both sides to find cos: cos = ±√(4/7)
So, the solutions for cos are cos = ±√(4/7).
Step 5: Substitute the values of cos into the original equation to find the corresponding values of sin: For cos = √(4/7): 2(√(4/7))² - 5sin + 1 = 0 2(4/7) - 5sin + 1 = 0 8/7 - 5sin + 1 = 0 -5sin = -15/7 sin = 3/7
For cos = -√(4/7): 2(-√(4/7))² - 5sin + 1 = 0 2(4/7) - 5sin + 1 = 0 8/7 - 5sin + 1 = 0 -5sin = -15/7 sin = 3/7
So, the solutions for sin are sin = 3/7.
Therefore, the solutions to the equation 2cos² - 5sin + 1 = 0 are: cos = ±√(4/7) and sin = 3/7.
B) sin(4s)cos(2x) = sin(2x)cos(4x)
To solve the equation sin(4s)cos(2x) = sin(2x)cos(4x), we need to simplify and manipulate the trigonometric expressions. Let's break it down step by step:
Step 1: Use the double-angle identities for sine and cosine: 2sin(s)cos(s)cos(2x) = 2sin(x)cos(x)cos(4x)
Step 2: Rearrange and simplify: sin(2s)cos(2x) = sin(2x)cos(4x)
Step 3: Use the double-angle identity for sine: 2sin(s)cos(s)cos(2x) = 2sin(x)cos(x)cos(4x)
Step 4: Divide both sides by 2 to simplify: sin(s)cos(s)cos(2x) = sin(x)cos(x)cos(4x)
Step 5: Use the double-angle identity for cosine: sin(s)cos(s)(2cos²(x) - 1) = sin(x)cos(x)(8cos⁴(x) - 8cos²(x) + 1)
Step 6: Expand and simplify: 2sin(s)cos(s)cos²(x) - sin(s)cos(s) = 8sin(x)cos(x)cos⁴(x) - 8sin(x)cos(x)cos²(x) + sin(x)cos(x)
Step 7: Use the Pythagorean identity sin²(x) + cos²(x) = 1 to simplify: 2sin(s)cos(s)cos²(x) - sin(s)cos(s) = 8sin(x)cos(x)(1 - sin²(x))⁴ - 8sin(x)cos(x)(1 - sin²(x))² + sin(x)cos(x)
Step 8: Distribute and simplify: 2sin(s)cos(s)cos²(x) - sin(s)cos(s) = 8sin(x)cos(x) - 8sin(x)cos(x)sin²(x) - 8sin(x)cos(x) + 8sin(x)cos(x)sin⁴(x) - 8sin(x)cos(x)sin²(x) + sin(x)cos(x)
Step 9: Combine like terms: 2sin(s)cos(s)cos²(x) - sin(s)cos(s) - 8sin(x)cos(x) + 8sin(x)cos(x)sin⁴(x) - 16sin(x)cos(x)sin²(x) + sin(x)cos(x) = 0
At this point, we have a complicated equation involving multiple trigonometric terms. To find specific solutions, we would need more information about the values of s and x or additional constraints on the equation.
C) cos(2x) - sin(x) = 0
To solve the equation cos(2x) - sin(x) = 0, we can use trigonometric identities and techniques. Let's break it down step by step:
Step 1: Use the double-angle identity for cosine: 2cos²(x) - 1 - sin(x) = 0
Step 2: Rearrange and simplify: 2cos²(x) - sin(x) - 1 = 0
Step 3: Use the Pythagorean identity sin²(x) + cos²(x) = 1 to express cos²(x) in terms of sin(x): 2(1 - sin²(x)) - sin(x) - 1 = 0 2 - 2sin²(x) - sin(x) - 1 = 0 -2sin²(x) - sin(x) + 1 = 0
Step 4: Factor the equation, if possible: (-2sin(x) + 1)(sin(x) + 1) = 0
Step 5: Set each factor equal to 0 and solve for sin(x): -2sin(x) + 1 = 0 or sin(x) + 1 = 0
For -2sin(x) + 1 = 0: -2sin(x) = -1 sin(x) = 1/2
For sin(x) + 1 = 0: sin(x) = -1
Step 6: Find the corresponding values of cos(x) using the Pythagorean identity: For sin(x) = 1/2: cos(x) = ±√(1 - sin²(x)) cos(x) = ±√(1 - (1/2)²) cos(x) = ±√(1 - 1/4) cos(x) = ±√(3/4) cos(x) = ±√3/2
For sin(x) = -1: cos(x) = ±√(1 - sin²(x)) cos(x) = ±√(1 - (-1)²) cos(x) = ±√(1 - 1) cos(x) = ±√0 cos(x) = 0
So, the solutions to the equation cos(2x) - sin(x) = 0 are: sin(x) = 1/2 and cos(x) = ±√3/2 sin(x) = -1 and cos(x) = 0


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili