Вопрос задан 21.02.2019 в 12:28. Предмет Алгебра. Спрашивает Зайцев Илья.

Решите неравенство |4-x|>-3x-2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нестерова Анастасия.
Решение в приложении
          ↓
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, решим неравенство |4-x| > -3x-2.

1. Выражение в модуле

Начнем с того, что рассмотрим выражение в модуле |4-x|. Если x находится слева от 4, то это выражение будет равно 4-x. Если x находится справа от 4, то это выражение будет равно x-4.

2. Разбиение на случаи

Поскольку мы имеем дело с неравенством, которое включает модуль, нам нужно рассмотреть оба случая:

1. 4 - x > -3x - 2 2. x - 4 > -3x - 2

3. Решение каждого случая

Случай 1: 4 - x > -3x - 2

Добавим x к обеим сторонам неравенства: 4 > -2x - 2

Теперь вычтем 4 из обеих сторон: 0 > -2x - 6

Разделим обе стороны на -2, поменяв направление неравенства: 0 < x + 3

Случай 2: x - 4 > -3x - 2

Добавим 3x к обеим сторонам: 4x - 4 > -2

Добавим 4 к обеим сторонам: 4x > 2

Разделим обе стороны на 4: x > 1/2

4. Объединение решений

Итак, мы получили два неравенства:

1. 0 < x + 3 2. x > 1/2

5. Окончательное решение

Теперь объединим эти два неравенства, учитывая, что общее решение будет включать в себя значения x, удовлетворяющие обоим условиям:

x > 1/2 и x > -3

Таким образом, окончательное решение неравенства |4-x| > -3x-2: x > 1/2

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос