
При каких значениях х функция y=-3x^2+6x-5 принимает неотрицательные значения


Ответы на вопрос

у = -6х+6=0
х=1
у=-3+6-5=-2
значит при любых х,у будет принимать отрицательные значения,простой график для наглядности



Finding Non-Negative Values of y for y = -3x^2 + 6x - 5
To find the values of x for which the function y = -3x^2 + 6x - 5 takes non-negative values, we need to determine the range of x that satisfies this condition.
The function y = -3x^2 + 6x - 5 is a quadratic function, and its graph is a parabola. The vertex of the parabola represents the minimum or maximum point of the function, and the parabola opens downwards because the coefficient of x^2 is negative.
To find the values of x for which the function y is non-negative, we need to find the x-values where the function crosses or touches the x-axis, as these are the points where y = 0 or y is non-negative.
The x-values where the function crosses or touches the x-axis can be found using the quadratic formula:
Quadratic Formula: The solutions to the quadratic equation ax^2 + bx + c = 0 are given by: \[x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\]
In this case, the quadratic equation is -3x^2 + 6x - 5 = 0, and we can use the quadratic formula to find the x-values.
Applying the Quadratic Formula
Using the quadratic formula, we can find the x-values where the function y = -3x^2 + 6x - 5 crosses or touches the x-axis.The quadratic formula gives the solutions for x as: \[x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\]
For the given function -3x^2 + 6x - 5, the coefficients are: - a = -3 - b = 6 - c = -5
Substituting these values into the quadratic formula, we get: \[x = \frac{{-6 \pm \sqrt{{6^2 - 4(-3)(-5)}}}}{{2(-3)}}\]
Solving for x, we get the x-values where the function crosses or touches the x-axis.
Conclusion
By solving the quadratic equation -3x^2 + 6x - 5 = 0 using the quadratic formula, we can find the x-values where the function y = -3x^2 + 6x - 5 takes non-negative values.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili