
Y=8+2x^2-x^4найти экстремум


Ответы на вопрос

(8+2x^2-x^4)'=0
4x-4x^3=0
4(x-x^3)=0
x(x^2-1)=0
x=0
x=+-1
-------(-1)-------(0)------(1)----->
(-). (+). (-). (+)
xmin=-1
xmax=1



Finding Extremum for the Function Y=8+2x^2-x^4
To find the extremum of the function Y=8+2x^2-x^4, we can use calculus to find the critical points and determine whether they correspond to a maximum or minimum.
The first step is to find the derivative of the function Y=8+2x^2-x^4 with respect to x. The critical points occur where the derivative is equal to zero or is undefined.
The derivative of the function Y=8+2x^2-x^4 is: Y' = 0 + 4x - 4x^3
Now, let's find the critical points by setting the derivative equal to zero and solving for x: 0 + 4x - 4x^3 = 0
This equation can be factored as: 4x(1 - x^2) = 0
So, the critical points occur at x=0, x=1, and x=-1.
Next, we need to determine whether these critical points correspond to a maximum or minimum. We can use the second derivative test to determine this.
The second derivative of the function Y=8+2x^2-x^4 is: Y'' = 4 - 12x^2
Now, let's evaluate the second derivative at the critical points: - For x=0: Y''(0) = 4 > 0, so it's a local minimum. - For x=1: Y''(1) = -8 < 0, so it's a local maximum. - For x=-1: Y''(-1) = -8 < 0, so it's a local maximum.
Therefore, the function Y=8+2x^2-x^4 has local minimum at x=0 and local maximum at x=1 and x=-1.
This analysis provides the extremum points for the given function.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili