Вопрос задан 19.02.2019 в 19:51. Предмет Алгебра. Спрашивает Чернов Владимир.

Решите уравнение sqrt(7x+9)- sqrt(3x+4)=4x+5. И поясните, пожалуйста.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Джумадилова Диляра.

√(7x+9)-√(3x+4)=4x+5

После возведения в квадрат обеих частей ур-ия получим:

7x+9-2√(7x+9)(3x+4)+3x+4=4x+5

2√(7x+9)(3x+4)=6x+8

После возведения в квадрат обеих частей ур-ия получим:

4(7x+9)(3x+4)=(6x+8)^2

48x^2+124x+80=0

12x^2+31x+20=0

D=1

x=-4/3⇒не удовлет. проверку

x=-5/4⇒удовлет. проверку

 

ОТВЕТ: -5/4

======================

 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения `sqrt(7x+9)- sqrt(3x+4)=4x+5` мы будем использовать алгебраические методы. Давайте разберемся по шагам:

Шаг 1: Изолируем корни

Начнем с изоляции корней, чтобы уравнение приняло вид `sqrt(7x+9) - sqrt(3x+4) - (4x+5) = 0`.

Шаг 2: Упрощение

Далее, для упрощения уравнения, возводим обе части в квадрат: `(sqrt(7x+9) - sqrt(3x+4) - (4x+5))^2 = 0^2`.

Шаг 3: Раскрытие скобок

Раскроем скобки и упростим выражение: `(7x+9) - 2*sqrt((7x+9)*(3x+4)) + (3x+4) - 2*(4x+5)*sqrt(7x+9) + (4x+5)^2 = 0`.

Шаг 4: Упрощение дальше

Продолжим упрощение: `7x+9 - 2*sqrt((7x+9)*(3x+4)) + 3x+4 - 2*(4x+5)*sqrt(7x+9) + 16x^2 + 40x + 25 = 0`.

Шаг 5: Объединение подобных членов

Объединим подобные члены: `16x^2 + 50x + 38 - 2*sqrt((7x+9)*(3x+4)) - 2*(4x+5)*sqrt(7x+9) = 0`.

Шаг 6: Перенос членов

Перенесем все члены с корнем на одну сторону уравнения: `16x^2 + 50x + 38 = 2*sqrt((7x+9)*(3x+4)) + 2*(4x+5)*sqrt(7x+9)`.

Шаг 7: Упрощение

Упростим выражение: `16x^2 + 50x + 38 = 2*sqrt((7x+9)*(3x+4)) + 8x*sqrt(7x+9) + 10*sqrt(7x+9)`.

Шаг 8: Перенос членов

Перенесем все члены с корнем на одну сторону уравнения: `16x^2 + 50x + 38 - 2*sqrt((7x+9)*(3x+4)) - 8x*sqrt(7x+9) - 10*sqrt(7x+9) = 0`.

Шаг 9: Упрощение дальше

Упростим выражение: `16x^2 + 50x + 38 - (2 + 8x + 10)*sqrt(7x+9) - 2*sqrt((7x+9)*(3x+4)) = 0`.

Шаг 10: Раскрытие скобок

Раскроем скобки и упростим выражение: `16x^2 + 50x + 38 - (2 + 8x + 10)*sqrt(7x+9) - 2*sqrt(21x^2 + 57x + 36) = 0`.

Шаг 11: Упрощение дальше

Упростим выражение: `16x^2 + 50x + 38 - (20 + 8x)*sqrt(7x+9) - 2*sqrt(21x^2 + 57x + 36) = 0`.

Шаг 12: Решение квадратного уравнения

Теперь мы можем решить получившееся квадратное уравнение `16x^2 + 50x + 38 - (20 + 8x)*sqrt(7x+9) - 2*sqrt(21x^2 + 57x + 36) = 0` численно или графически.

Пожалуйста, обратите внимание, что решение этого уравнения может быть сложным и требовать использования численных методов или графического анализа. Если вам нужно точное аналитическое решение, рекомендуется обратиться к специалисту в области алгебры или использовать программное обеспечение для символьных вычислений.

Надеюсь, это поможет! Если у вас есть еще вопросы, пожалуйста, дайте мне знать.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос