
A=30,6, a (1)=12,2 ,d=0,4 Найти: n-?


Ответы на вопрос

n=47



This is a question about arithmetic progression. To find the value of n, we need to use the formula:
$$a_n = a_1 + (n-1)d$$
where $a_n$ is the nth term, $a_1$ is the first term, $d$ is the common difference, and $n$ is the number of terms.
We are given that $A = 30.6$, $a_1 = 12.2$, and $d = 0.4$. We can substitute these values into the formula and solve for $n$:
$$30.6 = 12.2 + (n-1)0.4$$
$$18.4 = (n-1)0.4$$
$$46 = n-1$$
$$n = 47$$
Therefore, the value of n is 47. This means that the 47th term of the arithmetic progression is 30.6.
If you need more help with arithmetic progression, you can use some online calculators or resources, such as [Web 2.0 scientific calculator](https://web2.0calc.com/), [Step-by-Step Calculator - Symbolab](https://www.symbolab.com/solver/conversion-fraction-to-decimal-calculator), or [4.2 Linear Approximations and Differentials - OpenStax](https://openstax.org/books/calculus-volume-1/pages/4-2-linear-approximations-and-differentials). I hope this answer was helpful.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili