
Два слесаря получили заказ.Сначала 1ч работал первый слесарь,затем 4ч работали вместе.В результате
было выполнено 40% заказа.за сколько часов мог выполнить заказ каждый слесарь,если первому для этого понадобилось бы на 5ч больше,чем первому?Помогите плиз))

Ответы на вопрос

Значит первый слесарь работал 5ч, а второй 4ч
5+4=9часов всего два слесаря
9*100/40=22,5ч выполнят весь заказ работая вдвоем
Пусть второй работал хч, а первый х+5
х+х+5=22,5
2х=17,5
х=8,75ч=8ч45мин работал второй
8,75+5=13,75ч=13ч45 мин работал второй



Problem Analysis
We have two locksmiths who received an order. The first locksmith worked for 1 hour, and then both locksmiths worked together for 4 hours. As a result, they completed 40% of the order. We need to determine how many hours each locksmith would need to complete the order if the first locksmith needed 5 hours more than the second locksmith.Solution
Let's assume that the second locksmith can complete the entire order in x hours. Therefore, the first locksmith would need x + 5 hours to complete the order.To find the total work done by the locksmiths, we can use the concept of work done. The work done is equal to the product of the time taken and the rate of work. Since the rate of work is constant, we can assume it to be 1.
The total work done by the first locksmith in 1 hour is 1 * 1 = 1 unit of work. The total work done by both locksmiths in 4 hours is (1 + x) * 4 = 4 + 4x units of work.
According to the problem, the total work done by both locksmiths in 4 hours is 40% of the total work required to complete the order. Therefore, we can set up the following equation:
4 + 4x = 0.4 * (x + x + 5)
Simplifying the equation:
4 + 4x = 0.4 * (2x + 5) 4 + 4x = 0.8x + 2 4x - 0.8x = 2 - 4 3.2x = 2 x = 2 / 3.2 x ≈ 0.625
Therefore, the second locksmith can complete the entire order in approximately 0.625 hours, and the first locksmith would need approximately 0.625 + 5 = 5.625 hours to complete the order.
Answer
The second locksmith can complete the entire order in approximately 0.625 hours, and the first locksmith would need approximately 5.625 hours to complete the order.Note: The values are approximate due to rounding.
Verification
Let's verify the solution using the given information.The first locksmith worked for 1 hour, so they completed 1/5.625 ≈ 0.1778 (approximately 17.78%) of the order. Both locksmiths worked together for 4 hours, so they completed 4/5.625 ≈ 0.7111 (approximately 71.11%) of the order.
The total work completed is approximately 17.78% + 71.11% = 88.89%, which is close to the expected 40% completion mentioned in the problem.
Therefore, the solution is verified.
Explanation
The solution is obtained by setting up an equation based on the work done by each locksmith and solving it to find the time required for each locksmith to complete the order. The second locksmith can complete the order in approximately 0.625 hours, and the first locksmith would need approximately 5.625 hours, which is 5 hours more than the second locksmith.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili