Вопрос задан 18.02.2019 в 21:47. Предмет Алгебра. Спрашивает Шакирский Иван.

Используя теорему Виета, найдите подбором корни уравнения:q^2+3q-18=0n^2-12+11=0t^2-11t+18=0 ^ - в

квадратеПомогите пожалуйста!!!!(((
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Людвикевич Арина.
1)q*q=-18
   q+q=-3
q=6
q=-3
2)n*n=11
   n+n=12
n=11
n=1
3)t*t=18
  t+t=11
t=9
t=2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Using Vieta's Theorem to Find Roots of Quadratic Equations

To find the roots of the given quadratic equations using Vieta's theorem, we can use the following approach:

For a quadratic equation of the form ax^2 + bx + c = 0, the sum of the roots is -b/a and the product of the roots is c/a.

Let's solve the given quadratic equations one by one.

1. For the equation q^2 + 3q - 18 = 0: - Here, a = 1, b = 3, and c = -18. - Using Vieta's theorem, the sum of the roots is -b/a = -3/1 = -3 and the product of the roots is c/a = -18/1 = -18. - We need to find two numbers that add up to -3 and multiply to -18. By trial and error, we find that the roots are q = 6 and q = -3.

2. For the equation n^2 - 12n + 11 = 0: - Here, a = 1, b = -12, and c = 11. - Using Vieta's theorem, the sum of the roots is -b/a = 12/1 = 12 and the product of the roots is c/a = 11/1 = 11. - We need to find two numbers that add up to 12 and multiply to 11. By trial and error, we find that the roots are n = 11 and n = 1.

3. For the equation t^2 - 11t + 18 = 0: - Here, a = 1, b = -11, and c = 18. - Using Vieta's theorem, the sum of the roots is -b/a = 11/1 = 11 and the product of the roots is c/a = 18/1 = 18. - We need to find two numbers that add up to 11 and multiply to 18. By trial and error, we find that the roots are t = 9 and t = 2.

So, using Vieta's theorem and trial and error, we have found the roots for the given quadratic equations: - For q^2 + 3q - 18 = 0, the roots are q = 6 and q = -3. - For n^2 - 12n + 11 = 0, the roots are n = 11 and n = 1. - For t^2 - 11t + 18 = 0, the roots are t = 9 and t = 2.

I hope this helps! If you have any more questions or need further assistance, feel free to ask!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос