
X²-3х-4=0 Решите через дискрименант, пожалуйста)))


Ответы на вопрос

x1=(3+5):2=4
x2=(3-5):2=-1



Solving the Quadratic Equation using the Discriminant
To solve the equation x² - 3x - 4 = 0 using the discriminant, we need to first identify the coefficients of the quadratic equation. In this case, a = 1, b = -3, and c = -4.
The discriminant (Δ) is calculated using the formula: Δ = b² - 4ac.
Substituting the values, we have: Δ = (-3)² - 4(1)(-4).
Calculating the discriminant, we get: Δ = 9 + 16 = 25.
Now, let's analyze the value of the discriminant to determine the nature of the roots:
- If Δ > 0, the equation has two distinct real roots. - If Δ = 0, the equation has one real root (a repeated root). - If Δ < 0, the equation has no real roots (complex roots).
In this case, since Δ = 25 > 0, the equation has two distinct real roots.
To find the roots, we can use the quadratic formula: x = (-b ± √Δ) / (2a).
Substituting the values, we have: x = (-(-3) ± √25) / (2(1)).
Simplifying further, we get: x = (3 ± 5) / 2.
Therefore, the two solutions to the equation x² - 3x - 4 = 0 are:
- x₁ = (3 + 5) / 2 = 8 / 2 = 4 - x₂ = (3 - 5) / 2 = -2 / 2 = -1
So, the roots of the equation are x = 4 and x = -1.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili