
Исследовать функцию! х3 - 3х


Ответы на вопрос

2. f(-x) = - x³ + 3x = - (x³ - 3x) = - f(x) - нечетная функция
3. Непериодическая.
4. Точки пересечения с осью Ох и Оу.
f(x) = 0; x³ - 3x = 0; x(x²-3)=0
(0;0), (-√3;0), (√3;0) - точки пересечения с осью Ох
x=0; f(x)=0; (0;0) - с осью Оу.
5. Монотонность функции
f'(x) = (x³ - 3x)' = 3x² - 3 = 0
x² - 1 = 0
x = ±1
___+___(-1)___-__(1)__+___
Функция возрастает на промежутке x ∈ (-∞;-1) и x ∈ (1;+∞), а убывает - x ∈ (-1;1). x=-1 - локальный максимум. х=1 - локальный минимум.
7. Точки перегиба
f''(x) = 6x = 0 откуда х=0
Горизонтальных, наклонных и вертикальных асимптот нет.



Function Analysis: f(x) = x^3 - 3x
To analyze the function f(x) = x^3 - 3x, we can examine its properties such as the domain, range, symmetry, intercepts, and behavior.
Domain: The domain of a function represents the set of all possible input values (x-values) for which the function is defined. In this case, since the function f(x) = x^3 - 3x is a polynomial function, it is defined for all real numbers. Therefore, the domain of f(x) is (-∞, ∞).
Range: The range of a function represents the set of all possible output values (y-values) that the function can take. To determine the range of f(x) = x^3 - 3x, we can analyze its behavior as x approaches positive and negative infinity. As x approaches positive infinity, the function also approaches positive infinity. As x approaches negative infinity, the function approaches negative infinity. Therefore, the range of f(x) is (-∞, ∞).
Symmetry: To determine if the function f(x) = x^3 - 3x exhibits any symmetry, we can check if it is an even function (symmetric about the y-axis) or an odd function (symmetric about the origin). For this function, we can observe that f(-x) = (-x)^3 - 3(-x) = -x^3 + 3x = -(x^3 - 3x) = -f(x). Since f(-x) = -f(x), the function is an odd function and exhibits symmetry about the origin.
Intercepts: To find the x-intercepts of the function f(x) = x^3 - 3x, we set f(x) equal to zero and solve for x: x^3 - 3x = 0 x(x^2 - 3) = 0 x = 0 or x = ±√3
Therefore, the x-intercepts of the function are x = 0, x = √3, and x = -√3.
To find the y-intercept, we substitute x = 0 into the function: f(0) = (0)^3 - 3(0) = 0
Therefore, the y-intercept of the function is y = 0.
Behavior: To analyze the behavior of the function f(x) = x^3 - 3x, we can examine its end behavior as x approaches positive and negative infinity. As x approaches positive infinity, the function increases without bound. As x approaches negative infinity, the function decreases without bound. This behavior indicates that the function has no global maximum or minimum.
In summary: - Domain: (-∞, ∞) - Range: (-∞, ∞) - Symmetry: Odd function, symmetric about the origin - X-intercepts: x = 0, x = √3, x = -√3 - Y-intercept: y = 0 - Behavior: Increases without bound as x approaches positive infinity, decreases without bound as x approaches negative infinity.
I hope this analysis helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili