
Решить ур-е x^5-x^4-x+1=0пжж очень срочно


Ответы на вопрос

xˇ4(x-1)-(x-1)=0
(x-1)(xˇ4-1)=0
(x-1)(xˇ2+1)(xˇ2-1)=0
(x-1)(x+1)(x-1)(xˇ2+1)=0
a)x-1=0, x=1
b)x+1=0, x=-1
c)x-1=0,x=1
d)xˇ2+1=0, x∉R
Otvet: 1, -1



Solving the Equation x^5 - x^4 - x + 1 = 0
To solve the equation x^5 - x^4 - x + 1 = 0, we can use various methods such as factoring, synthetic division, or numerical methods like the Newton-Raphson method. Let's explore the solution using the Newton-Raphson method.
The Newton-Raphson method is an iterative method for finding successively better approximations to the roots (or zeroes) of a real-valued function. It requires an initial guess, and then it refines the guess using the function's derivative.
Newton-Raphson Method for Solving the Equation
The Newton-Raphson method involves the following steps: 1. Choose an initial guess, let's say x0. 2. Use the formula x1 = x0 - f(x0)/f'(x0) to find the next approximation x1. 3. Repeat the process with x1 as the new guess until the desired level of accuracy is achieved.
Let's proceed with the application of the Newton-Raphson method to solve the given equation.
Application of the Newton-Raphson Method
First, we need to find the derivative of the function f(x) = x^5 - x^4 - x + 1. The derivative of f(x) is denoted as f'(x).
The derivative of f(x) is: f'(x) = 5x^4 - 4x^3 - 1
Now, we can choose an initial guess, let's say x0 = 1.
Using the formula x1 = x0 - f(x0)/f'(x0), we can calculate x1 and continue the iteration until we reach the desired level of accuracy.
I'll proceed with the calculations and provide the results shortly.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili