
Найдите вторые производные y = lnsinx


Ответы на вопрос

G(x) = y " = (lnsinx) " = 1/sinx *(sinx) " =1/sinx*cosx = ctgx первая производная
G ' (x) = (ctgx) " = -1/sin^2x вторая производная



Finding the Second Derivative of y = ln(sin(x))
To find the second derivative of y = ln(sin(x)), we'll first need to find the first derivative of y with respect to x, and then find the second derivative by differentiating the first derivative with respect to x.
1. First Derivative of y = ln(sin(x)): The first derivative of y = ln(sin(x)) can be found using the chain rule, which states that if y = f(g(x)), then y' = f'(g(x)) * g'(x).
Applying the chain rule: - y = ln(u), where u = sin(x) - y' = (1/u) * u', where u' is the derivative of sin(x)
Using the derivatives of sin(x) and ln(u): - y' = (1/sin(x)) * cos(x) - y' = cot(x) 2. Second Derivative of y = ln(sin(x)): To find the second derivative, we need to differentiate the first derivative y' = cot(x) with respect to x.
Differentiating y' = cot(x): - y'' = -csc^2(x)
Therefore, the second derivative of y = ln(sin(x)) is: - y'' = -csc^2(x) So, the second derivative of y = ln(sin(x)) is y'' = -csc^2(x).
If you have any further questions or need additional assistance, feel free to ask!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili