
Вопрос задан 13.02.2019 в 04:21.
Предмет Алгебра.
Спрашивает Пенская Иванна.
Решите пожалуйста) 1)Lim (x^3-+4x^2+5x+2)/(x^3-3x-2) x->-1 2)Lim ln(1-3x)/((sqrt8x+4)-2) x->0
3)lim (4^x-2^7x)/(tg3x-x) x->0 4)lim (sin2x/sin3x)^x2 x->0

Ответы на вопрос

Отвечает Баттхёртов Мухаммед.
Решение
1) Lim (x^3-+4x^2+5x+2)/(x^3-3x-2)
x->-1
x³ - 3x - 2 = 0
x = - 1
x³ - 3x - 2 I x + 1
-(x³ + x²) x² - x - 2 = (x + 1)(x - 2)
- x² - 3x
-(-x ² - x)
- 2x - 2
-(-2x - 2)
0
x³ - 3x - 2 = (x + 1)*(x + 1) (x + 2) = (x + 1)²(x - 2)
x^3+4x^2+5x+2 = 0
x = - 1
x³ + 4x² + 5x + 2 I x + 1
-(x³ + x²) x² + 3x + 2 = (x + 1)(x + 2)
3x² + 5x
-(3x² + 3x)
2x + 2
-(2x + 2)
0
x³ + 4x² + 5x + 2 = (x + 1)²(x + 2)
limx-->- 1 [ (x + 1)²(x + 2)] / [(x + 1)²(x - 2)] =
= limx-->- 1 (x + 2) / (x - 2) = - (1 /3 )
2) Lim ln(1-3x)/((sqrt8x+4)-2)
x->0
Используем правило Лопиталя. Будем брать производные от числителя и знаменателя до тех пор, пока не избавимся от неопределённости.
[ln(1 - 3x)]` = - 3/(1-3x)
[√(8x + 4) - 2]` = 8/2√(8x + 4) = 4/√(8x + 4)
limx-->0 [- 3*√(8x + 4] / [4*(1 - 3x) = - 6/4 = - 3/2
3) lim (4^x-2^7x)/(tg3x-x)
x->0
(4^x-2^7)` = 4^x*ln4 - 2^7x*ln2
limx-->0 (4^x*ln4 - 2^7x*ln2 ) = 4ln4 - 2ln2
(tg3x - x)` = 3/cos3x - 1
limx--> 0 (3/cos3x - 1) = 3 - 1 = 2
lim x-->0 (4^x-2^7x)/(tg3x-x) = (4ln4 - 2ln2)/2 = 2ln4 - ln2
4) lim x--> 0 (sin2x/sin3x)^x2
применим первый замечательный предел: [ limx--> 0 sinx/x = 1 ]
lim x--> 0 [2*(sin2x/2x)] * limx--> 0 [(1/3)*(sin3x)/3x] = 2/3
=
1) Lim (x^3-+4x^2+5x+2)/(x^3-3x-2)
x->-1
x³ - 3x - 2 = 0
x = - 1
x³ - 3x - 2 I x + 1
-(x³ + x²) x² - x - 2 = (x + 1)(x - 2)
- x² - 3x
-(-x ² - x)
- 2x - 2
-(-2x - 2)
0
x³ - 3x - 2 = (x + 1)*(x + 1) (x + 2) = (x + 1)²(x - 2)
x^3+4x^2+5x+2 = 0
x = - 1
x³ + 4x² + 5x + 2 I x + 1
-(x³ + x²) x² + 3x + 2 = (x + 1)(x + 2)
3x² + 5x
-(3x² + 3x)
2x + 2
-(2x + 2)
0
x³ + 4x² + 5x + 2 = (x + 1)²(x + 2)
limx-->- 1 [ (x + 1)²(x + 2)] / [(x + 1)²(x - 2)] =
= limx-->- 1 (x + 2) / (x - 2) = - (1 /3 )
2) Lim ln(1-3x)/((sqrt8x+4)-2)
x->0
Используем правило Лопиталя. Будем брать производные от числителя и знаменателя до тех пор, пока не избавимся от неопределённости.
[ln(1 - 3x)]` = - 3/(1-3x)
[√(8x + 4) - 2]` = 8/2√(8x + 4) = 4/√(8x + 4)
limx-->0 [- 3*√(8x + 4] / [4*(1 - 3x) = - 6/4 = - 3/2
3) lim (4^x-2^7x)/(tg3x-x)
x->0
(4^x-2^7)` = 4^x*ln4 - 2^7x*ln2
limx-->0 (4^x*ln4 - 2^7x*ln2 ) = 4ln4 - 2ln2
(tg3x - x)` = 3/cos3x - 1
limx--> 0 (3/cos3x - 1) = 3 - 1 = 2
lim x-->0 (4^x-2^7x)/(tg3x-x) = (4ln4 - 2ln2)/2 = 2ln4 - ln2
4) lim x--> 0 (sin2x/sin3x)^x2
применим первый замечательный предел: [ limx--> 0 sinx/x = 1 ]
lim x--> 0 [2*(sin2x/2x)] * limx--> 0 [(1/3)*(sin3x)/3x] = 2/3
=


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili