Вопрос задан 11.02.2019 в 04:38. Предмет Алгебра. Спрашивает Олейник Аня.

Найдите площадь треугольника, ограниченного осями координат и касательной, проведённой к графику

функции у=√2х² - 4 в точке х0=2.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Власова Настя.
Найдем касательную к функции, она выражается формулой y=f(x0)+f`(x0)(x-x0)
f(x0) = 2
f`(x)=-1/(2*sqrt(2*x^2-4))
f`(x0)= - 1/4
Функция касательной имеет вид 
y= 2  - 1/4(x - 2)
y = -1/4x + 5/2
Чтобы найти площадь полученной фигуры, проинтегрируем y = -1/4x + 5/2  от нуля до 1/4x=5/2(x=10) по x.
Получим интеграл S(0;10) от функции -1/4x+5/2
Получим первообразную -x^2/8 + 5x/2, подставим пределы интегрирования (0;10)
-100/8 + 50/2 = -25/2 + 50/2 = 25/2 = 12.5
Ответ 12.5

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос