
Вопрос задан 06.02.2019 в 12:29.
Предмет Алгебра.
Спрашивает Denver Lesha.
Cos^2(2x)-sin^2(2x)=1/2


Ответы на вопрос

Отвечает Насибуллина Регина.
Решение
Cos^2(2x)-sin^2(2x)=1/2
cos4x = 1/2
4x = (+ -)arccos(1/2) + 2πn, n ∈ Z
4x = (+ -) (π/3) + 2πn, n ∈ Z
x = (+ -) (π/12) + πn/2, n ∈ Z
Cos^2(2x)-sin^2(2x)=1/2
cos4x = 1/2
4x = (+ -)arccos(1/2) + 2πn, n ∈ Z
4x = (+ -) (π/3) + 2πn, n ∈ Z
x = (+ -) (π/12) + πn/2, n ∈ Z


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili