
Вопрос задан 01.04.2018 в 04:57.
Предмет Алгебра.
Спрашивает Вишня Катя.
Помогите решить:-2sin(7п\2+x)sinx=√3cosx(2 пример на фото)



Ответы на вопрос

Отвечает Сердцев Олег.
Sin2x-2√3sin²x+4cosx-4√3sinx=0
(2sinxcosx+4cosx)-(2√3sin²x+4√3sinx)=0
2cosx(sinx+2)=2√3sinx(sinx+2)=0
2(sinx+2)(cosx-√3sinx)=0
sinx+2=0 или cosx-√3sinx=0 |:cosx≠0
sinx≠2, т.к. 1-√3tgx=0
|sinx|≤1, a 2>1 tgx=√3/3
x=π/6+πn, n∈Z
[-π/2;π]
x=π/6
Ответ: π/6
-2sin(7π/2+x)*sinx=√3cosx
2cosx*sinx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0 или 2sinx-√3=0
x=π/2+πn, n∈Z sinx=√3/2
x=(-1)^n*π/3+πn, n∈Z
[-7π;-6π]
x=-7π+π/2=-14π/2+π/2=-13π/2
Ответ: -13π/2


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili