Вопрос задан 14.01.2019 в 04:00. Предмет Алгебра. Спрашивает Борисова Екатерина.

Из всех прямоугольных параллелепипедов вписанных в сферу радиуса R и имеющих в основании квадрат,

найти параллелепипед наибольшего объёма. я решил это, но мой ответ такой: (x1 - одна из сторон, x1 = R*2*(2/3)^(1/2), ответ же: R*2/(3)^(1/2), ответ так же будет куб. ps. если x - сторона квадрата, то вывел я x^2=4r^2-h^2, где h - высота паралл. Прикол в том, что сделал производную через V(x) = x^2 * h. Поясните, что и как, не понимаю этого. "моё решение не содержит ошибок, перерешал 7 раз, исписано 6 страниц", однако вот.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кот Наташа.
Диагональ параллелепипеда равна 2R,сторона основания (квадрата) равна х,высота параллелепипеда равна h
4R²=2x²+h²⇒h²=4R²-2x²⇒h=√(4R²-2x²)
V(x)=x²*√(4R²-2x²)
V`(x)=2x*√(4R²-2x²)-2x³/√(4R²-2x²)=
=(2x*(4R²-2x²)-2x³)/√(4R²-2x²)=2x(4R²-2x²-x²)/√(4R²-2x²)
=2x(4R²-3x²)/√(4R²-2x²)=0
x=0 не удов усл
4R²-3x²=0
3x²=4R²
x²=4R²/3
x=-2R/√3
х=2R/√3
           _                     +                       _
---------------(-2R/√3)----------(2R/√3)---------------
                                         max

Vmax=4R²/3*√(4R²-8R²/3)=4R²/3*√(4R²/3)=4R²/3*2R/√3=
=8R³/(3√3)=8R³√3/9
0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос