
Из пунктов A и B расстояние между которыми 19 км,вышли одновременно навстречу друг другу два
пешехода и встретились в 9 км от A.Найдите скорость пешехода,шедшего из A,если известно,что он шел со скоростью ,на 1 км/ч большей,чем пешеход,шедший из В,и сделал в пути получсовую остановку.

Ответы на вопрос

до встречи первый пешеход прошёл 9 км, а второй 19-9=10 км.
пусть пешеход из Б шёл со скоростью х (км/ч),
тогда пешеход из А шёл со скоростью х+1 (км/ч)
на свой путь пешеход из Б затратил 10/х (ч)
пешеход из А затратил на свой путь 9/(х+1)+1/2 (ч).
так как они встретились, значит в пути были одинаковое время
поэтому 9/(х+1)+1/2=10/х
10/х-9/(х+1)=1/2
приведём к общему знаменателю 2х(х+1). Дополнительный множитель у первой дроби 2(х+1), дополнительный множитель у второй дроби 2х, а у третьей х(х+1)
10*2(х+1)-9*2х=1*х(х+1)
20х+20-18х=x^2+x
2x+20=x^2+x
x^2-x-20=0.
по теореме Виета, произведение корней = -20, а сумма корней 1. Это числа 5 и -4.
5*(-4)=-20,5+(-4)=1.
скорость не может быть отрицательным числом, поэтому скорость пешехода из Б=5 (км/ч), тогда скорость пешехода из А =6 км/ч


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili