
Вопрос задан 28.12.2018 в 23:31.
Предмет Алгебра.
Спрашивает Исакова Анжелика.
Найдите критические точки функции определите какие из них являются максимума а какие минимума
f(x)=48x-x^3

Ответы на вопрос

Отвечает Беккер Дима.
Чтоб найти критические точки, нужно производную функции прировнять к нулю:
f'(x)=0
f'(x)= 48-3x^2
48-3x^2=0
3x^2=48
x^2=16
x1= 4
x2= -4
возьмём:
f(-4)= 48×(-4)-(-4)^3= -192+64= -128 (минимум)
f(4)= 48×4-4^3=192-64= 128 (максимум)
f'(x)=0
f'(x)= 48-3x^2
48-3x^2=0
3x^2=48
x^2=16
x1= 4
x2= -4
возьмём:
f(-4)= 48×(-4)-(-4)^3= -192+64= -128 (минимум)
f(4)= 48×4-4^3=192-64= 128 (максимум)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili