Вопрос задан 27.11.2018 в 16:41. Предмет Алгебра. Спрашивает Шевчук Александра.

Найти сумму целых чисел из области значений функции которые она принимает на отрезке [-2;3]

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куликов Герман.
 \sqrt{1-2x+x^2}+\sqrt{x^2+2x+1}=\sqrt{(1-x)^2}+\sqrt{(x+1)^2}=|1-x|+|x+1|
1) При x≤-1 |1-x|=1-x, |x+1|=-x-1, y=1-x-x-1=-2x.
На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2.
Среди них целыми являются y=2; 3; 4.
2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2.
На интервале (-1;1) y принимает одно значение - y=2.
3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x.
На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6.
Среди них целыми являются y=2; 3; 4; 5; 6.

Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6.
Их сумма равна (2+6)/2*5=20.


0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос