
Решите систему.a){12x-7y=2; {4x-5y=6.б){7u+2v=1; {17u+6v=-9. в){6x=25y+1; {5x-16y=-4. Реклама
if (!window.hideDisplayAds) { googletag.cmd.push(function() { googletag.display('gpt-ad-brainly_rectangle_in_question'); }); } Попроси больше объяснений СледитьОтметить нарушение Tach4242 06.05.2012

Ответы на вопрос

a)(4x-5y=6
(12x-7y=2
(икс=шесть четвертых - минус пять четвертых игрек
(12x-7y=2
(икс=шесть четвертых - минус пять четвертых игрек
(18-12y=2
(икс=шесть четвертых - минус пять четвертых игрек
(12y=16
(y=четыре третьих
(x= минус одна третья



Solution to System of Equations
Let's solve the given system of equations:
a) {12x-7y=2 {4x-5y=6
b) {7u+2v=1 {17u+6v=-9
c) {6x=25y+1 {5x-16y=-4
To solve these systems of equations, we can use various methods such as substitution, elimination, or matrix methods. Let's solve each system using the substitution method.
Solving System a)
We have the following equations: {12x-7y=2 (Equation 1) {4x-5y=6 (Equation 2)
From Equation 1, we can express x in terms of y: 12x = 2 + 7y x = (2 + 7y)/12
Substituting this value of x into Equation 2, we get: 4((2 + 7y)/12) - 5y = 6 (2 + 7y)/3 - 5y = 6 2 + 7y - 15y = 18 -8y = 16 y = -2
Substituting the value of y back into Equation 1, we get: 12x - 7(-2) = 2 12x + 14 = 2 12x = -12 x = -1
Therefore, the solution to System a) is x = -1 and y = -2.
Solving System b)
We have the following equations: {7u+2v=1 (Equation 3) {17u+6v=-9 (Equation 4)
From Equation 3, we can express u in terms of v: 7u = 1 - 2v u = (1 - 2v)/7
Substituting this value of u into Equation 4, we get: 17((1 - 2v)/7) + 6v = -9 (17 - 34v)/7 + 6v = -9 17 - 34v + 42v = -63 8v = -80 v = -10
Substituting the value of v back into Equation 3, we get: 7u + 2(-10) = 1 7u - 20 = 1 7u = 21 u = 3
Therefore, the solution to System b) is u = 3 and v = -10.
Solving System c)
We have the following equations: {6x=25y+1 (Equation 5) {5x-16y=-4 (Equation 6)
From Equation 5, we can express x in terms of y: 6x = 25y + 1 x = (25y + 1)/6
Substituting this value of x into Equation 6, we get: 5((25y + 1)/6) - 16y = -4 (125y + 5)/6 - 16y = -4 125y + 5 - 96y = -24 29y = -29 y = -1
Substituting the value of y back into Equation 5, we get: 6x = 25(-1) + 1 6x = -25 + 1 6x = -24 x = -4
Therefore, the solution to System c) is x = -4 and y = -1.
In summary, the solutions to the given systems of equations are: a) x = -1, y = -2 b) u = 3, v = -10 c) x = -4, y = -1
Please let me know if you need any further assistance!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili