Вопрос задан 02.11.2018 в 03:12. Предмет Алгебра. Спрашивает Цекулс Коля.

Сколько килограммов 20-процентного и сколько килограммов 50-процентного сплавов меди надо

взять,чтобы получить 30кг 30-процентного сплава
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Акулов Сергей.
Первый раствор:

х – искомая масса раствора
20%=0,2 – содержание в этом растворе

Второй раствор:

30-х – масса этого раствора
50%=0,5 – содержание в этом растворе

Получившийся раствор:

30 – масса получившегося раствора
30%=0,3 – содержание в этом растворе

Исходя из данных, составим уравнение:

0,2х+0,5(30-х)=0,3*30
0,2х+15-0,5х=9
-0,3х=-6
х=20

Ответ: 20кг
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим массу 20%-ного сплава меди как \( x \) кг, а массу 50%-ного сплава меди как \( y \) кг. Нам нужно найти значения \( x \) и \( y \) так, чтобы при их смешивании получился 30%-ный сплав массой 30 кг.

Для этого мы можем использовать уравнение массы:

\[ x + y = 30 \]

Теперь давайте учтем содержание меди в каждом сплаве:

1. Для 20%-ного сплава меди, содержащего \( x \) кг, меди в нем будет \( 0.2x \) кг. 2. Для 50%-ного сплава меди, содержащего \( y \) кг, меди в нем будет \( 0.5y \) кг.

С учетом того, что мы хотим получить 30%-ный сплав массой 30 кг, уравнение для содержания меди выглядит так:

\[ 0.2x + 0.5y = 0.3 \times 30 \]

Разрешим эту систему уравнений:

\[ \begin{align*} 1. \quad & x + y = 30 \\ 2. \quad & 0.2x + 0.5y = 9 \end{align*} \]

Можно решить эту систему уравнений методом подстановки, выражения \( x \) из уравнения 1 и подставки в уравнение 2, или использовать другие методы решения систем уравнений.

Решение даст значения \( x \) и \( y \), которые соответствуют массам 20%-ного и 50%-ного сплавов меди, которые нужно взять, чтобы получить 30 кг 30%-ного сплава.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос